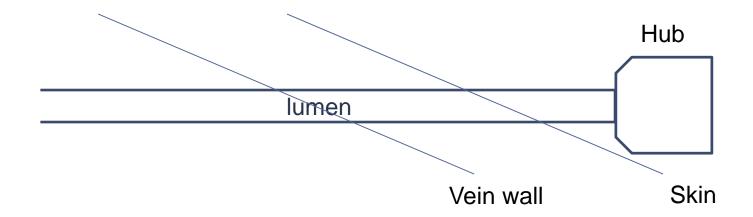
UCLA CLABSI Task Force February 25, 2014 Update

Zachary A. Rubin, MD

Objectives of Talk

- Defining CLABSI
- Cost of CLABSI
- Rationale for Task Force
- Goals of Task Force
- Structure of Task Force

Risk factors associated with CLABSI


- Intrinsic patient risk factors (non-modifiable)
 - Prolonged hospitalization before catheterization
 - Neutropenia
 - Prematurity (ie, birth at an early gestational age)
 - Total parenteral nutrition

Modifiable risk factors:

- Femoral and internal jugular catheterization
- Prolonged duration of catheterization
- Heavy microbial colonization at the insertion site
- Heavy microbial colonization of the catheter hub
- Substandard care of the catheter (eg, excessive manipulation of the catheter or reduced nurse-to-patient ratio)

Pathogenesis of CLABSI

- Intraluminal infection
- Migration around external surface of CVC
- Hematogenous spread
- Contaminated infusate

Pathogenesis of CLABSI

- Intraluminal infection
 - Majority cause
 - Contaminated hub
 - May require removal
 - Often no visible signs
 - Fever
 - +blood cx

Migration around exterior "tunnel infection"

- Minority cause for CVC
- Early (within 7 days)
- Common with PVC
- Requires removal
- Symptoms
 - Fever
 - Pain
 - Redness/pus at site

Pathogenesis of CLABSI

- Hematogenous spread to catheter from primary source elsewhere (S. aureus & GNR due to pneumonia).
 - May still require removal of catheter
- Contaminated infusate
 - rare

CLABSI Definition

- CDC Definition
 - Primary BSI + presence of central venous catheter
 - Primary BSI
 - Blood cx + w recognized pathogen + symptoms
 - BSI not secondary to primary INFECTION (must meet CDC definition)
 - In 2013, CDC introduced a new category: Mucosal barrier injury (MBI) which recognizes BSI due to GI bacterial translocation in febrile neutropenia.
 - Unit attribution based on 48 hour transfer rule.

Human Cost of CLABSI at UCLA Case study

- 70M Type 2 Diabetes
- Former CIA agent
- Admitted to RRUMC for dyspnea
- Found to have a ortic stenosis → baloon valvuloplasty
- Post-op renal failure requiring intermittent hemodialysis
- Discharged to SNF

Human Cost of CLABSI at UCLA Case study

- At SNF, developed severe back pain.
- Transferred to SMH.
- Blood cultures from admission 4/4 sets + Coagulase negative staph.
- MRI demonstrated osteomyelitis and discitis of spine, L2-3, L3-4.
- Biopsy of spine + coagulase neg staph.
- Deferred surgery, elected medical therapy.

Human Cost of CLABSI at UCLA Case study

- Lumbar spinal osteomyelitis and discitis secondary to CLABSI.
- 6 weeks of IV Vancomycin→PO doxycycline x 3 months.
- Still had debilitating pain, bed bound, non-ambulatory.
- Developed another HAI due to immobility (pneumonia) and eventually died after 3+ months in ICU/hospital.

CLABSIs are very costly

- 80,000 CLABSI in US ICUs each year
- ICU study in 2006 at Wash U¹:
 - Controlling for other cost factors & comorbidities
 - Median ICU LOS: 24 days v 5 days
 - Median hospital LOS: 45 v 11 days
 - Directly attributable cost \$12,000
 - Death 28 v 51%
- Study in Canada used matched pairs to assess impact of CLABSI²
 - found pts w CLABSI were 3 times more likely to die in hospital.
- Study at USC in 2011³
 - \$32,000 attributable to each CLABSI

CLABSI Analysis Q4, 2011

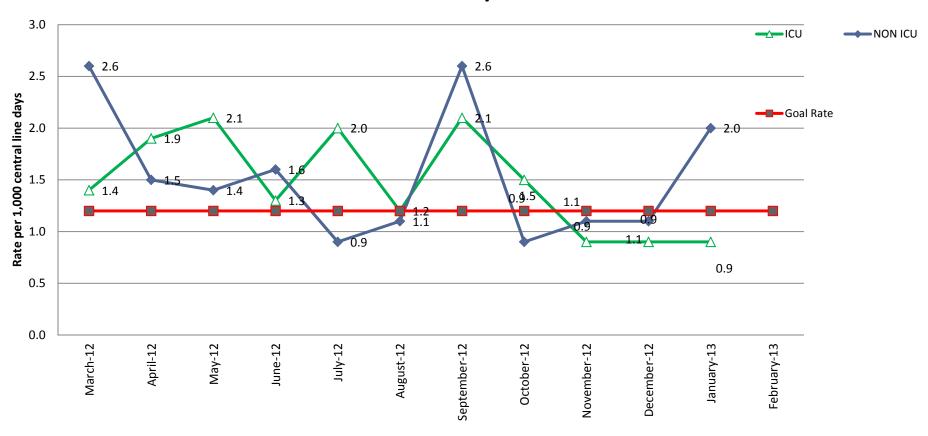
RRUMC

- •17 cases in ICU, 4 were neutropenic
- •27 cases in ACU, 15 were neutropenic

• SMH

- •5 cases in ICU
- •3 cases in ACU (Q3 11 cases, 7 infections in 2 pts)
- Q4, 2012 financial cost 33 preventable cases

```
x $12,000 = $396,000 (Wash U, 2006)
```


- x \$32,000 = \$1,056,000 (USC, 2011)
- Deaths = 5 (?attributable)

Financial cost of CLABSI

- Pay for performance/value based purchasing
 - Reimbursement based on quality/safety outcomes
 - Lack of payment for complications (CLABSI)
- Incentive payment programs
 - DSRIP (CA/CMS)
- Public Reporting
 - Decreased referrals
 - Patients may vote with their feet...

Pooled CLABSI Rates, ICUs and ACUs RRUCMC, 2013-2014

CLABSI Rate by Month

Why do we need a Task Force?

- CLABSI is a persistent problem at UCLA.
 - Even removing non-preventable infections, UCLA CLABSI rate is >50%ile nationally.
- Eliminate costs
 - Eliminate Patient suffering
 - High CLABSI rates result in tangible financial repercussions for UCLA Health System.
- Logistical challenges
 - Bundles work better than piecemeal interventions.
 - No single intervention → requires development and implementation as a package.
 - No one group at UCLA owns CLABSI—it needs to be a multidisciplinary approach to succeed.

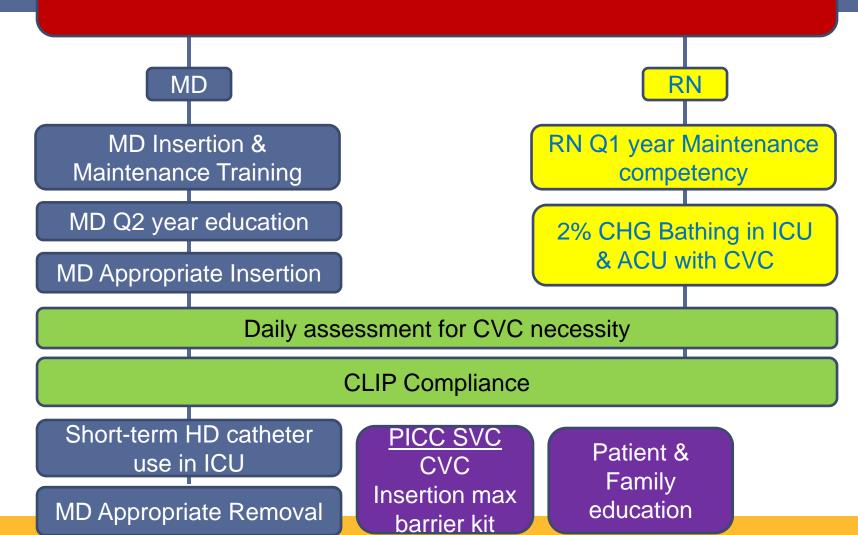
CLABSI Prevention is a TEAM effort with many stakeholders

Insertion Maintenance Removal RN ICU/ACU RN ICU/ACU **ER Anesthesia** MD ICU/ACU OR OR Surgeon MD **Ambulatory** IR Radiology **NP PICC SVC** MD ICU/ACU **Nephrology** Family/Patient ICU/ACU **Dialysis RN Ambulatory** Family/Patient UCLA Health System

Goals of CLABSI Task Force

Phase 1

- Develop UCLA Consensus Guidelines for the Prevention of CLABSI.
 - Review literature & research.
 - Apply up-to-date research to UCLA clinical setting & practice.


Phase 2

Implement UCLA Consensus Guidelines in UCLA clinical areas.

Phase 3

Sustaining positive change.

CLABSI Task Force Recommendations

Catheter Insertion

- Choice of site
 - Avoid femoral site (in adults)
- Appropriateness
 - Do not place CVC if peripheral IV is an option
 - Choose correct CVC
- Technique
 - Aseptic technique is critical!
 - Sterile dressing & hub caps in place.

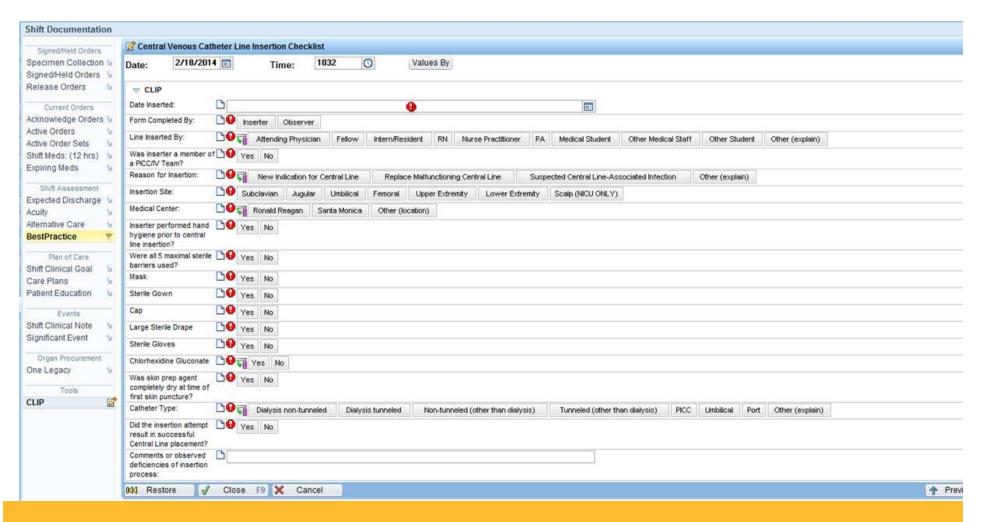
Avoid Femoral Site Remove "Code Lines" Promptly

- Avoid femoral insertions as much as possible.
- Removal of all non-sterile "code lines" within 24 hours.

Do not place unnecessary CVCs— HS Policy 1401

- Continued hemodynamic instability/monitoring
- Fluid resuscitation
- Long-term IV antibiotics (>14 days)
- Total parenteral nutrition (TPN)
- Chemotherapy
- Poor IV access
- long-term IV treatment or medication w no oral equivalent
- Medications which cannot be safely given through peripheral IV access.
- CNS surgery

CLABSI prevention elsewhere


- Michigan Keystone Project
- Decrease in CLABSI in 103 ICUs in Michigan (66% reduction)
- Basic interventions:
 - Hand hygiene
 - Full barrier precautions during CL insertion
 - Skin cleansing with chlorhexidine
 - Avoiding femoral site
 - Removing unnecessary catheters
 - Use of insertion checklist
- Pittsburgh Regional Health Initiative Decrease in CLABSIs in 66 ICUs (68% decrease)

CLIP (Central Line Insertion Practices)

- Mandated by CA Senate to complete CLIP form on EVERY CVC insertion
 - Hand hygiene
 - 2% CHG prep >60 days old
 - CHG dry
 - Full sterile barriers used: sterile mask, gloves, cap, gown & drape
- New process:
 - In high risk areas (ICU, OR, ER, IR), RN will observe the insertion and complete the form on EVERY CVC insertion.
 - If the RN identifies a break in aseptic technique, he/she will say "The sterile field has been contaminated,"
 - New CLIP form should be completed when inserter goes to separate site.

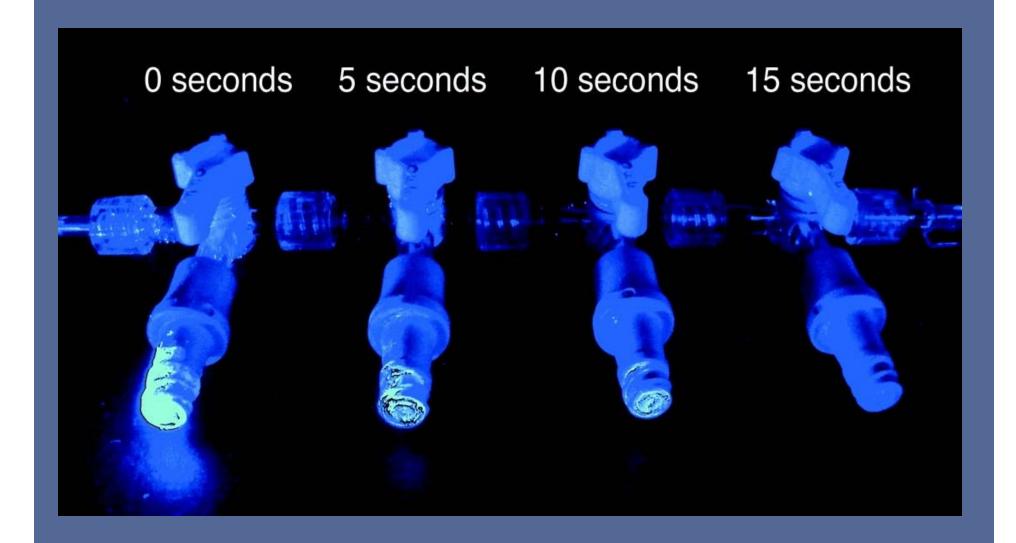
CLIP Form in CC—March 2014

No excuses! Medline Max Barrier Kit

- Contains all the components for good aseptic technique.
- Should be stocked in all ICUs, ER and ORs.

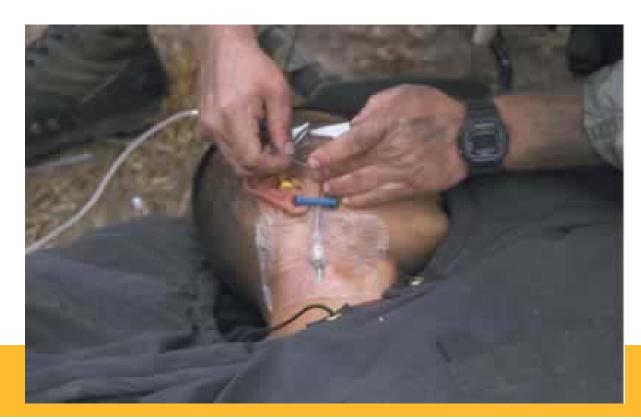
Catheter Maintenance

- Scrub the hub
- Aseptic dressing changes
- Daily assessment for removal of catheter


Scrub the Hub

- Catheter hubs are contaminated by skin bacteria.
 Scrubbing the hub is effective way to remove this contamination.
- EVERY CVC access

Use alcohol prep pad to scrub the hub with friction x 15


seconds.

Dressing changes

- Dressing change kit
- Nursing competencies
- Bedside patient hand-off

CVC Maintenance Roadshow

Daily Assessment of Line Necessity

- Every CVC should be assessed daily to determine if it is no longer necessary.
 - Continued hemodynamic instability/monitoring
 - Fluid resuscitation
 - Long-term IV antibiotics (>14 days)
 - Total parenteral nutrition (TPN)
 - Chemotherapy
 - Poor IV access
 - long-term IV treatment or medication w no oral equivalent
 - Medications which cannot be safely given through peripheral IV access.
 - CNS surgery

2% CHG bathing

	Experimental		Control		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 CHG Bathing							
Borer et al, 2007	2	1600	15	1923	3.3%	0.16 [0.04, 0.70]	· · · · · · · · · · · · · · · · · · ·
Camus et al, 2005	6	1991	7	1961	5.3%	0.84 [0.28, 2.52]	
Climo et al, 2009	14	15472	41	15225	10.5%	0.34 [0.18, 0.62]	
Gould et al, 2007	171	6664	264	6899	17.1%	0.66 [0.54, 0.80]	*
Munoz-Price et al, 2009 Subtotal (95% CI)	29	7632 33359	59	6210 32218	13.1% 49.3%		→
Total events	222		386				
Heterogeneity: $Tau^2 = 0.1$	2; Chi ² =	11.07, 0	df = 4 (P)	= 0.03);	$I^2 = 64\%$		
Test for overall effect: Z =							
			8				
1.2.2 CHG Impregnated	Cloths						
Bleasedale et al, 2007	9	2210	22	2119	8.2%	0.39 [0.18, 0.85]	A
Dixon and Carver, 2010	8	3148	27	3346	8.0%	0.31 [0.14, 0.69]	 -
Evans et al, 2010	4	1785	15	1904	5.2%	0.28 [0.09, 0.85]	
Holder and Zellinger, 2009	2	2000	12	3333	3.3%	0.28 [0.06, 1.24]	· · · ·
Montecalvo et al, 2010	27	13864	57	12603	12.8%	0.43 [0.27, 0.68]	
Popovich et al, 2009	2	5610	19	6728	3.4%	0.13 [0.03, 0.54]	;
Popovich et al, 2010	17	5799	19	7366	9.8%	1.14 [0.59, 2.19]	
Subtotal (95% CI)		34416		37399	50.7%	0.41 [0.25, 0.65]	◆
Total events	69		171				
Heterogeneity: Tau ² = 0.1	19; Chi2 =	12.80, 0	df = 6 (P)	= 0.05);	$I^2 = 53\%$		
Test for overall effect: Z =	= 3.78 (P =	= 0.0002	?)				
Tatal (05% CI)		67775		60617	100.00/	0.44 [0.33, 0.50]	•
Total (95% CI)		67775	<u> </u>	09017	100.0%	0.44 [0.33, 0.59]	▼
Total events 291 557							
Heterogeneity: $Tau^2 = 0.13$; $Chi^2 = 26.12$, $df = 11$ (P = 0.006); $I^2 = 58\%$							
Test for overall effect: $Z = 5.39 (P < 0.00001)$							Favors experimental Favors control
Test for subgroup differences: $Chi^2 = 0.19$, $df = 1$ (P = 0.66), $I^2 = 0\%$							

2% CHG bathing

- All ICUs (RRUMC and SMH)
- All ACU patients with CVCs
- Barriers:
 - Soapy feel of CHG
 - Low compliance
- Plans:
 - Begin house-wide daily bathing for all inpatients.

Catheter Removal

- Daily assessment of line necessity
- "Talk the line" as a team—MDs and RNs
- Responding to infection
 - Mini causal analysis form with nursing
 - Infection Prevention assesses each case
 - CLABSIs are discussed w ICUs monthly

Putting it all together

- Insertion + Maintenance + Removal
- No single intervention works—ALL interventions work successfully as a "bundle"
- Simple measures make a HUGE difference
 - Get the catheter out
 - Scrub the hub
 - CHG bathing
 - CLIP process/documentation
- Other hospitals have done it!

Sustainability is the key...

- Ongoing educational efforts are crucial
- Continuous reinforcement
 - CVC Insertion technique
 - Removal of unnecessary CVC
 - CVC Maintenance
- Immediate feedback
 - Infection Prevention meetings & case reviews monthly with ICUs
 - Mini-CA process & feedback through nursing
 - Pending CareConnect reports
 - Inappropriate insertion (did not meet indications)
 - CLIP form feedback for fallouts

